

Figure 2.—Beer's law plot of A/b vs. $M_{\rm f}$ for values of A at the band maximum and at 240°. Inset shows the dilute, linear range and the dashed line represents limiting Beer's law behavior.

To compare this work with recent measurements of lower oxidation states of bismuth in NaX-AlX₃ for X = Cl or Br, it was necessary to extend the spectrum of the proposed Bi⁺ ion in pure molten BiCl₃ into the near-infrared region as shown in Figure 1 (curve A). Also shown are spectra for Bi⁺ in NaBr-AlBr₃¹⁰ and NaCl-AlCl₃.⁷ Similar changes in spectrum occur in both solvent systems as chloride is replaced by bromide. The bands shift to lower energies and become somewhat more intense. A comparison of the main band maxima for all four solvents is given in Table I, and the simi-

 TABLE I

 ENERGIES (CM⁻¹) OF BAND MAXIMA IN AlX₈-NaX AND BiX₈ SOLVENTS

 X
 AlX₈-NaX
 BiX₈

 Br
 16,400
 16,300

 13,900
 17,900

 Cl
 18,200
 17,900

 14,500-15,100
 13,300

larities are obvious. The most striking difference between solvent systems, as seen in Figure 1, is in the intensities which are 10 times greater in BiX_3 than in $NaX-AlX_3$ mixtures. This absorptivity intensification in BiX_3 solvents may arise from a Bi(I)-Bi(III) intervalence-transfer absorption similar to that observed in the Ti(III)-Ti(IV) system.¹¹ Such an effect has been suggested for these ions in molten $NaCI-AlCl_3$.⁷ If one assumes this explanation for the large intensity differences, then the spectra are otherwise fairly similar, lending support to the presumption that Bi^+ exists in $BiCl_3$ and $BiBr_3$ melts and that curves A and C, respectively, represent its spectrum in these media.

As pointed out earlier the exact equilibria occurring in BiX_3 melts cannot be specified. However, if one makes the reasonable assumption that Bi^+ is present in equilibrium with a polymeric species as in eq 1 and 2, constants for such equilibria can be calculated from the spectrophotometric data and a comparison of these constants for $Bi-BiCl_3$ and $Bi-BiBr_3$ will then show the relative tendency for Bi^+ formation in the two systems. Thus, the exact equilibrium need not be known as long as it is of the general type

$$n\mathrm{Bi}^{+} = \mathrm{Bi}_{m}^{(8m-2n)^{+}} + (n-m)\mathrm{Bi}^{8+}$$
 (4)

Since a mass action constant for eq 1 has already been calculated for the chloride system, this same constant was calculated for Bi-BiBr₃ using the same procedures.³ The value compared reasonably well with the equilibrium constant obtained by Topol and Osteryoung⁵ from emf measurements on the Bi-BiBr₃ system. The mass action constant, K_M , based on molarity, was converted to K_N , based on mole fraction using the density data of Keneshea and Cubicciotti.9 At 240°, $K_{\rm N} = 1.16 \times 10^3 K_{\rm M}$ so that the spectrophotometric $K_{\rm N}$ is 2.4 \times 10⁴. $K_{\rm N}$, calculated from emf data at this temperature, is 1.9×10^4 . In the chloride case $K_{\rm N}$'s of 3.8 \times 10⁶ and 2.7 \times 10⁶ were obtained at 264° by spectrophotometric³ and emf⁵ methods, respectively. The agreement between emf and spectrophotometric results in both systems is quite good considering the experimental uncertainty in determining these constants.

The equilibrium constant for reaction 1 is about 100 times larger for chloride than bromide indicating that the replacement of chloride by bromide favors the formation of Bi⁺. Electrical conductivity measurements¹² indicate that the tendency for Bi⁺ formation is even greater in BiI₃ so that the order of increasing stability of Bi⁺ in BiX₃ melts appears to be X = Cl < Br < I.

Acknowledgment.—The author wishes to thank G. P. Smith for his substantial contribution to this work.

(12) L. F. Grantham, J. Chem. Phys., 43, 1415 (1965).

Contribution No. 1749 from the Department of Chemistry, Indiana University, Bloomington, Indiana 47401

Studies of Boranes. XXVII. Boron-11 Nuclear Magnetic Resonance Spectrum of *n*-Nonaborane(15) at 64.16 MHz¹

By Philip C. Keller and Riley Schaeffer

Received February 13, 1969

We have recently had the opportunity to obtain the ¹¹B nmr spectra of a number of compounds at 64.16 MHz,² and since the published literature contains only

⁽¹⁰⁾ N. J. Bjerrum, H. L. Davis, and G. P. Smith, Inorg. Chem., 6, 1603 (1967).

⁽¹¹⁾ N. S. Hush, Progr. Inorg. Chem., 8, 391 (1967).

⁽¹⁾ For paper XXVI of this series see R. Maruca, J. D. Odom, and R. Schaeffer, *Inorg. Chem.*, 7, 412 (1968).

⁽²⁾ The spectra were obtained with the cooperation of Mr. Eugene Pier, Varian Associates, Palo Alto, Calif.

Figure 1.—The ¹¹B nmr spectrum of n-B₉H₁₅ at 64.16 MHz. Coupling constants (top line) are in Hz; chemical shifts (bottom line) are in ppm relative to $(C_2H_5)_2O \cdot BF \cdot$.

Figure 2.—The boron arrangement in n-B₉H₁₅.

a 12.8-MHz³ spectrum of n-B₉H₁₅ and 19.3-MHz⁴ spectra of partially deuterated n-B₉H₁₅, we felt it worthwhile to examine the high-resolution spectrum of this material.

The spectrum in Figure 1 represents a fivefold improvement in resolution over the 12.8-MHz spectrum published by Burg and Kratzer.³ Five of the six magnetically distinguishable boron environments are clearly represented. The signal from the sixth boron is obscured by the two overlapping doublets B and C, since the integrated area of this set of peaks is five-ninths that of the total spectrum.

Although it is still not possible to interpret the spectrum of n-B₉H₁₅ unambiguously, it seems reasonable to make a tentative assignment using a suggestion by Lipscomb⁵ based on the similarity of environment between many of the boron atoms in n-B₉H₁₅ and those in B₄H₁₀ and B₅H₁₁. Figures 2 and 3 illustrate the boron arrangement in n-B₉H₁₅ and in B₄H₁₀ and B₅H₁₁, respectively. The configuration of the 3-, 4-, and 9boron atoms in n-B₉H₁₅ bears a strong resemblance to the arrangement of the 1-, 2-, and 3-boron atoms in B₄H₁₀, while the 2-, 5-, 6-, 7-, and 8-boron atoms in n-B₉H₁₅ are similar to the apical and basal borons in B₅H₁₁.

The doublet E of unit intensity at highest field may be assigned to the B(2) atom on the basis of its similarity to the apical position in B_5H_{11} . Proceeding to lower field, one might assign doublet D to the 4- and 9-

Figure 3.—The boron arrangement in B₄H₁₀ and B₅H₁₁.

boron atoms, corresponding to the BH groups in B_4H_{10} . The overlapping set of peaks, B and C, of intensity 5 may be correlated with the 5-, 6-, 7-, and 8-boron atoms, which resemble the basal atoms in B_5H_{11} , and the B(3) atom, obscured by the other peaks, which resembles the BH₂ groups in B_4H_{10} . By process of elimination the extreme low-field signal A may be assigned to the boron atom in position 1.

Acknowledgment.—We gratefully acknowledge the support of the National Science Foundation through Grant GP4944.

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, CALIFORNIA STATE COLLEGE, LOS ANGELES, CALIFORNIA 90032

A Proton Magnetic Resonance Hydration Study of Scandium, Yttrium, and Thorium Perchlorates in Water-Acetone Mixtures

By Anthony Fratiello, Robert E. Lee, and Ronald E. Schuster

Received April 11, 1969

The value of the direct proton magnetic resonance (pmr) method for measuring cation hydration numbers has been demonstrated for a variety of systems.¹⁻¹⁴ In a pmr investigation of the nitrate solutions of diamagnetic Sc³⁺, Y³⁺, and Th⁴⁺ in water-acetone mixtures, hydration numbers of about 3.9, 2.4, and 2.9, respectively, were obtained for these ions, and the results

- (1) R. E. Schuster and A. Fratiello, J. Chem. Phys., 47, 1554 (1967).
- A. Fratiello and R. E. Schuster, Tetrahedron Letters, 4041 (1967).
 A. Fratiello, R. E. Lee, V. M. Nishida, and R. E. Schuster, J. Chem. Phys., 47, 4951 (1967).
- (4) L. D. Supran and N. Sheppard, Chem. Commun., 832 (1967).
- (5) A. Fratiello, R. E. Lee, V. M. Nishida, and R. E. Schuster, *ibid.*, 173
- (1968).
- (6) A. Fratiello, R. E. Lee, V. M. Nishida, and R. E. Schuster, J. Chem. Phys., 48, 3705 (1968).
 - (7) A. Fratiello and R. E. Schuster, J. Chem. Educ., 45, 91 (1968).
 - (8) N. A. Matwiyoff and H. Taube, J. Am. Chem. Soc., 90, 2796 (1968).
 - (9) N. A. Matwiyoff and P. E. Darley, J. Phys. Chem., 72, 2659 (1968).
- A. Fratiello, R. E. Lee, V. M. Nishida, and R. E. Schuster, Inorg. Chem., 8, 69 (1969).
 A. Fratiello, R. E. Lee, V. M. Nishida, and R. E. Schuster, J. Chem.
- (19) A. Praticino, R. D. Dec, V. M. Histinia, and R. D. Schuster, J. Chem. Phys., 50, 3624 (1969).
- (12) A. Fratiello, R. E. Lee, and R. E. Schuster, Chem. Commun., 37 (1969).
- (13) A. Fratiello, R. E. Lee, and R. E. Schuster, Mol. Phys., in press.
- (14) A. Fratiello, R. E. Lee, and R. E. Schuster, Inorg. Chem., 9, 82 (1970)

⁽³⁾ A. B. Burg and R. Kratzer, Inorg. Chem., 1, 725 (1962).

⁽⁴⁾ R. Maruca, J. D. Odom, and R. Schaeffer, ibid., 7, 412 (1968),

⁽⁵⁾ W. N. Lipscomb, "Boron Hydrides," W. A. Benjamin, Inc., New York, N. Y., 1963, p 139.